Oxford Cambridge and RSA

GCSE (9-1)

Combined Science B (Twenty First Century Science)

J260/03: Physics (Foundation Tier)

General Certificate of Secondary Education

Mark Scheme for June 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

Annotations available in RM Assessor

Annotation	Meaning
	Correct response
A	Incorrect response
A	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
	alternative and acceptable answers for the same marking point
DO NOT ALLOW	Separates marking points
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

The breakdown of Assessment Objectives for GCSE (9-1) in Combined Science B:

	Assessment Objective
AO1	Demonstrate knowledge and understanding of scientific ideas and scientific techniques and procedures.
AO1.1	Demonstrate knowledge and understanding of scientific ideas.
AO1.2	Demonstrate knowledge and understanding of scientific techniques and procedures.
AO2	Apply knowledge and understanding of scientific ideas and scientific enquiry, techniques and procedures.
AO2.1	Apply knowledge and understanding of scientific ideas.
AO2.2	Apply knowledge and understanding of scientific enquiry, techniques and procedures.
AO3	Analyse information and ideas to interpret and evaluate, make judgements and draw conclusions and develop and improve experimental procedures. AO3.1 Analyse information and ideas to interpret and evaluate. AO3.1a AO3.1b Analyse information and ideas to interpret. AO3.2 Analyse information and ideas to evaluate. AO3.2a Analyse information and ideas to make judgements. AO3.2b Analyse information and ideas to draw conclusions.
AO3.3	Analyse information and ideas to develop and improve experimental procedures.
AO3.3b	Analyse information and ideas to develop experimental procedures.

Question		Answer	Marks	AO element	Guidance
$\mathbf{1}$	(a)	reflected \checkmark	$\mathbf{1}$	$\mathbf{1 . 1}$	
	(b)	A wave transfers energy from one place to another \checkmark In air, sound waves travel at about $330 \mathrm{~m} / \mathrm{s} \checkmark$	$\mathbf{2}$	$\mathbf{1 . 1 \times 2}$	

Question			Answer	Marks	AO element	Guidance
3	(a)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=\mathbf{3 6 0} 000(\mathrm{~J})$ award 2 marks Substitution in equation: kinetic energy $=0.5 \times 1800 \times$ $(20)^{2}$ $=360000(\mathrm{~J}) \checkmark$	2	2.1x2	ALLOW correct answers in standard form or using prefixes e.g. $3.6 \times 10^{5}, 360 \mathrm{~kJ}$
	(b)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=\mathbf{8 1 0} 000(\mathrm{~J})$ award $\mathbf{3}$ marks Recall equation work done $=$ force \times distance Substitution in equation: work done $=9000 \times 90$ $=810000(\mathrm{~J}) \mathrm{V}$	3	$\begin{gathered} 1.2 \\ 2.1 \times 2 \end{gathered}$	ALLOW correct answers in standard form or using prefixes e.g. $8.1 \times 10^{5}, 810 \mathrm{~kJ}$
	(c)	(i)	(when the roads are wet) braking distance greater/increases/longer (because) friction reduced / more slippery / less grip	2	$\begin{aligned} & \hline 3.1 \mathrm{a} \\ & 2.1 \end{aligned}$	
		(ii)	(when the bus is faster) / braking distance greater/increases/longer \checkmark (because) bus has more (kinetic) energy (to transfer)/ more work must be done (by braking force) / more energy needed to stop	2	$\begin{aligned} & \hline 3.1 \mathrm{a} \\ & 2.1 \end{aligned}$	ALLOW momentum

Question		Answer	Marks	AO element	Guidance
4	(a)	$3^{\text {rd }}$ box infra red \checkmark $5^{\text {th }}$ box ultra violet \checkmark	$\mathbf{2}$	$\mathbf{1 . 1 \times 2}$	ALLOW one mark if answers reversed
	(b)	a very small \checkmark	1	1.1	

Question			Answer	Marks	AO element	Guidance
5	(a)	(i)	car \checkmark	1	3.1b	
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 7.2 (J) award 3 marks $\text { Keyboard potential difference }=4.5(\mathrm{~V})$ Substitution in equation: energy transferred $=1.6 \times 4.5$ $=7.2(\mathrm{~J}) \checkmark$	3	$\begin{gathered} 2.2 \\ 2.1 \times 2 \end{gathered}$	
	(b)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 1.8 (W) award $\mathbf{3}$ marks Recall equation: power $=$ p.d. \times current Substitution in equation: power $=9 \times 0.2 \checkmark$ $=1.8(\mathrm{~W}) \checkmark$	3	$\begin{gathered} 1.2 \\ 2.1 \times 2 \end{gathered}$	

Question		Answer	Marks	AO element	Guidance
6	(a)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 4 (s) award 3 marks Recall equation: speed $=$ distance \div time \checkmark Substitution in equation: $30=120 \div$ time \checkmark $\text { time }=(120 \div 30)=4(\mathrm{~s}) \checkmark$	3	1.2 2.1×2	IGNORE triangle relationship
	(b)	Accelerates/speeds up (then) travels at constant speed (then) decelerates/slows down Identifies constant speed $18 \mathrm{~m} / \mathrm{s}$ Further detail e.g. acceleration/deceleration is constant OR correctly refers to time $21 \mathrm{~s} / 35 \mathrm{~s} / 47 \mathrm{~s}$ OR constant speed for $14 \mathrm{~s} \checkmark$	3	$\begin{gathered} 3.1 \mathrm{a} \\ 2.2 \times 2 \end{gathered}$	ALLOW identification as max speed OR 'accelerates to'

Question			Answer	Marks	AO element	Guidance
8	(a)		(AB) magnet (PQ) iron bar (XY) magnet	1	3.2a	All three need to be correct to award the mark
	(b)	(i)	Zero/nothing/0 \checkmark	1	1.1	
		(ii)	down arrow (starting on black spot) labelled W/weight/mg up arrow (starting on black spot) labelled $F /$ (magnetic) force \checkmark 2 arrows equal length opposite direction	3	2.2x3	ALLOW gravity Vertical arrows judged by eye. Equal length arrows judged by eye.
		(iii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 2.2 (N) award 4 marks Recognise magnetic force $=$ weight Convert 220 (g) to $0.22(\mathrm{~kg})$ Recall \& Substitution in equation: magnetic force $=$ weight $=0.22 \times 10 \mathrm{~V}$ Magnetic force $=2.2(\mathrm{~N}) \checkmark$	4	1.2×2 2.1x2	ALLOW recognition of magnetic force $=$ weight if not explicitly stated 2200 (N) scores 3 marks

Question			Answer	Marks	AO element	Guidance
9	(a)		```Amplitude \(=0.5 \mathrm{~m} \quad \checkmark\) Wavelength \(=1.8 \mathrm{~m} \checkmark\) Frequency \(=3\) times/waves per second OR frequency \(=\) \(3 \mathrm{~Hz} \checkmark\)```	3	1.1×3	Must link word with value. ALLOW answers on diagram
	(b)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $240(\mathrm{~N})$ award 4 marks Mass $=1.6 \times 15(=24)$ Recall weight $=$ mass \times gravitational field strength Weight $=24 \times 10 \checkmark$ Weight $=240(N) \checkmark$	4	$\begin{aligned} & 2.1 \\ & 1.2 \\ & 2.1 \\ & 2.1 \end{aligned}$	24 without evidence of calculation is insufficient
	(c)	(i)	Chemical (store) OR energy (store) in her muscles \checkmark	1	2.1	
		(ii)	Kinetic (energy) OR mechanical working OR by the moving rope OR (energy) in the wave \checkmark	1	2.1	DO NOT ALLOW idea that the rope transfers the energy, it must be the movement or wave. ALLOW by the wave
		(iii)	Thermal (store) OR (energy store) in the surroundings \checkmark	1	2.1	ALLOW Heat
	(d)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=3.3(\mathrm{~m} / \mathrm{s})$ award 3 marks Recall wave speed $=$ frequency \times wavelength Wave speed $=2.2 \times 1.5 \checkmark$ Wave speed $=3.3(\mathrm{~m} / \mathrm{s})$	3	$\begin{gathered} 1.2 \\ 2.1 \times 2 \end{gathered}$	

Question		Answer	Marks	AO element	Guidance
10	(a)	Ice: regular pattern/array close together \checkmark Water: irregular but still close together Any two from: particles in ice cannot change their position relative to other particles/neighbours particles in water can change their position relative to other particles/slide over other particles \checkmark Particles in water have more energy / ORA Particles in water have weaker attractive forces / ORA \checkmark	4	1.1×4	ALLOW atoms or molecules for particles DO NOT ALLOW obvious change in particle size/much larger spaces between particles in water than in ice i.e. a gas
	(b)	Any one from: (melted ice) particles: have more (potential/internal) energy/energy has been transferred to them \checkmark OR have weaker forces between them OR Are slightly further apart AND (but) there are still the same number of particles OR the mass of the particles has not changed \checkmark	2	1.1×2	ALLOW atoms or molecules for particles ALLOW the particles have not changed DO NOT ALLOW the mass has not changed
	(c)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 16700 (J) award 2 marks Select and apply equation: energy to cause a change of state $=$ mass \times specific latent heat $E=50 \times 334$ $=16700(\mathrm{~J})$	2	2.1x2	

Question			Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
11	(a)		transformers \checkmark	1	1.1	ALLOW transformer IGNORE step up, step down
	(b)		increased decreased \checkmark	1	1.1	DO NOT ALLOW answers in incorrect order (must have both answers in this order)
	(c)	(i)	230 (V) \checkmark	1	1.1	ALLOW values in range 220-240 (V)
		(ii)	(The high voltage/p.d.) may cause a high current Which may overheat wires /cause fires OR may cause electric shock/stop heart OR (The high voltage/p.d.) is a.c. can affect muscles / so you can't let go OR may cause electric shock/stop heart \checkmark	2	1.1x2	ALLOW electrocution ALLOW electrocution

Question		Answer	Marks	AO element	Guidance
12	(a)	Safety (max. 2 from): Don't boil the liquid OR Suggestion of sensible max temperature. Take care not to touch hot parts Allow apparatus to cool before dismantling Measurements (max. 2 from): Measure initial and final temperature of liquid/oil/water Measure mass of liquid/oil/water Record energy on joulemeter \checkmark Stir before taking temperature readings	3	1.2×3	ALLOW goggles or other sensible safety precaution e.g. heat proof gloves IGNORE gloves unqualified, apron IGNORE measure temperature IGNORE measure temperature difference ALLOW measure energy used ALLOW measure time to heat and power of heater ALLOW measure time to heat, p.d. and current in heater. ALLOW one mark (in measurements) for idea of substitution of measurements in the specific heat capacity equation
	(b)	FIRST CHECK ANSWER ON ANSWER LINE If answer $=2.05\left(\mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{C}\right)$ $\begin{aligned} & (1.94+2.23+1.98) / 3 \\ & =2.05\left(\mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{C}\right) \checkmark \end{aligned}$	2	1.2×2	ALLOW any answer that rounds to 2.05 ALLOW one mark for 1.96 if 2.23 is explicitly identified as an outlier
	(c)	(accurate value is) lower \checkmark (Because) energy is required to heat up apparatus and/or surroundings Lag the container OR add a lid	3	$\begin{aligned} & 3.1 a \\ & 3.1 b \\ & 3.3 b \end{aligned}$	ECF ORA ALLOW only improvements that reduce the energy transfer to apparatus/surroundings

	es	Answer	Marks	AO element	Guidance
13	*	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Interprets the charts to describe trends in detail. AND Gives an explanation for the trends including a reference to renewables and coal. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Interprets the charts to describe a trend in detail. OR Gives an explanation for the trend in renewables and coal. OR States a basic trend shown in the charts and explain a trend by referring to either coal decreasing or renewables increasing. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) States a basic trend shown in the charts OR Explains a trend by referring to either coal decreasing or	6	$\begin{gathered} \hline 3.1 \mathrm{a} \times 4 \\ 2.1 \times 2 \end{gathered}$	AO3.1a Analyse information and ideas to interpret For example: Basic trend: - coal use has fallen - gas use not much changed /no clear trend /up and down - nuclear not much changed /no clear trend /up and down - renewables increased - other and oil not much changed /no clear trend /up and down/unchanged overall - quoting data e.g. coal from 36.5% to 22.0% More detail: - coal use falling every year - renewables increasing every year - the increase in renewables is increasing every year - using data for coal e.g. coal fell by (36.5-22.0 =) 14.5\% - using data for renewables AO2.1 Application of knowledge and understanding For example: Explains that: - coal/gas result in CO_{2} emissions - which cause global warming - coal fired power stations / mines are being closed - coal fired stations produce SO_{2} - nuclear does not cause CO_{2} emissions - renewables increasingly used as more

Question		Answer	Marks	AO element	Guidance
renewables increasing. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.		sustainable renewables increasingly used as no CO_{2} emissions when generating			
	lots of wind farms and offshore wind farms have been built lots of solar farms have been built.				

OCR (Oxford Cambridge and RSA Examinations)
 The Triangle Building
 Shaftesbury Road
 Cambridge
 CB2 8EA
 OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

